3.580 \(\int \frac{1}{\sqrt{e \cos (c+d x)} (a+b \sin (c+d x))} \, dx\)

Optimal. Leaf size=299 \[ -\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{d \sqrt{e} \left (b^2-a^2\right )^{3/4}}-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{d \sqrt{e} \left (b^2-a^2\right )^{3/4}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{d \left (a^2-b \left (b-\sqrt{b^2-a^2}\right )\right ) \sqrt{e \cos (c+d x)}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{d \left (a^2-b \left (\sqrt{b^2-a^2}+b\right )\right ) \sqrt{e \cos (c+d x)}} \]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/((-a^2 + b^2)^(3/4)*d*Sqrt[e])
) - (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/((-a^2 + b^2)^(3/4)*d*Sqrt[
e]) + (a*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/((a^2 - b*(b - Sqrt[-a^2
 + b^2]))*d*Sqrt[e*Cos[c + d*x]]) + (a*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2
, 2])/((a^2 - b*(b + Sqrt[-a^2 + b^2]))*d*Sqrt[e*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.57428, antiderivative size = 299, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {2702, 2807, 2805, 329, 212, 208, 205} \[ -\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{d \sqrt{e} \left (b^2-a^2\right )^{3/4}}-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{d \sqrt{e} \left (b^2-a^2\right )^{3/4}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{d \left (a^2-b \left (b-\sqrt{b^2-a^2}\right )\right ) \sqrt{e \cos (c+d x)}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{d \left (a^2-b \left (\sqrt{b^2-a^2}+b\right )\right ) \sqrt{e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])),x]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/((-a^2 + b^2)^(3/4)*d*Sqrt[e])
) - (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/((-a^2 + b^2)^(3/4)*d*Sqrt[
e]) + (a*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/((a^2 - b*(b - Sqrt[-a^2
 + b^2]))*d*Sqrt[e*Cos[c + d*x]]) + (a*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2
, 2])/((a^2 - b*(b + Sqrt[-a^2 + b^2]))*d*Sqrt[e*Cos[c + d*x]])

Rule 2702

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, -Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[(b*g)/f, Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{e \cos (c+d x)} (a+b \sin (c+d x))} \, dx &=-\frac{a \int \frac{1}{\sqrt{e \cos (c+d x)} \left (\sqrt{-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{2 \sqrt{-a^2+b^2}}-\frac{a \int \frac{1}{\sqrt{e \cos (c+d x)} \left (\sqrt{-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{2 \sqrt{-a^2+b^2}}+\frac{(b e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (\left (a^2-b^2\right ) e^2+b^2 x^2\right )} \, dx,x,e \cos (c+d x)\right )}{d}\\ &=\frac{(2 b e) \operatorname{Subst}\left (\int \frac{1}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{d}-\frac{\left (a \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \left (\sqrt{-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{2 \sqrt{-a^2+b^2} \sqrt{e \cos (c+d x)}}-\frac{\left (a \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \left (\sqrt{-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{2 \sqrt{-a^2+b^2} \sqrt{e \cos (c+d x)}}\\ &=\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b \left (b-\sqrt{-a^2+b^2}\right )\right ) d \sqrt{e \cos (c+d x)}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b \left (b+\sqrt{-a^2+b^2}\right )\right ) d \sqrt{e \cos (c+d x)}}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} e-b x^2} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{\sqrt{-a^2+b^2} d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} e+b x^2} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{\sqrt{-a^2+b^2} d}\\ &=-\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt{e}}\right )}{\left (-a^2+b^2\right )^{3/4} d \sqrt{e}}-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt{e}}\right )}{\left (-a^2+b^2\right )^{3/4} d \sqrt{e}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b \left (b-\sqrt{-a^2+b^2}\right )\right ) d \sqrt{e \cos (c+d x)}}+\frac{a \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b \left (b+\sqrt{-a^2+b^2}\right )\right ) d \sqrt{e \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 16.7561, size = 558, normalized size = 1.87 \[ -\frac{2 \sin (c+d x) \sqrt{\cos (c+d x)} \left (a+b \sqrt{\sin ^2(c+d x)}\right ) \left (\frac{5 a \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} F_1\left (\frac{1}{4};\frac{1}{2},1;\frac{5}{4};\cos ^2(c+d x),\frac{b^2 \cos ^2(c+d x)}{b^2-a^2}\right )}{\sqrt{\sin ^2(c+d x)} \left (a^2+b^2 \cos ^2(c+d x)-b^2\right ) \left (5 \left (a^2-b^2\right ) F_1\left (\frac{1}{4};\frac{1}{2},1;\frac{5}{4};\cos ^2(c+d x),\frac{b^2 \cos ^2(c+d x)}{b^2-a^2}\right )-2 \cos ^2(c+d x) \left (2 b^2 F_1\left (\frac{5}{4};\frac{1}{2},2;\frac{9}{4};\cos ^2(c+d x),\frac{b^2 \cos ^2(c+d x)}{b^2-a^2}\right )+\left (b^2-a^2\right ) F_1\left (\frac{5}{4};\frac{3}{2},1;\frac{9}{4};\cos ^2(c+d x),\frac{b^2 \cos ^2(c+d x)}{b^2-a^2}\right )\right )\right )}-\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) \sqrt{b} \left (\log \left (-(1+i) \sqrt{b} \sqrt [4]{b^2-a^2} \sqrt{\cos (c+d x)}+\sqrt{b^2-a^2}+i b \cos (c+d x)\right )-\log \left ((1+i) \sqrt{b} \sqrt [4]{b^2-a^2} \sqrt{\cos (c+d x)}+\sqrt{b^2-a^2}+i b \cos (c+d x)\right )+2 \tan ^{-1}\left (1-\frac{(1+i) \sqrt{b} \sqrt{\cos (c+d x)}}{\sqrt [4]{b^2-a^2}}\right )-2 \tan ^{-1}\left (1+\frac{(1+i) \sqrt{b} \sqrt{\cos (c+d x)}}{\sqrt [4]{b^2-a^2}}\right )\right )}{\left (b^2-a^2\right )^{3/4}}\right )}{d \sqrt{\sin ^2(c+d x)} \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])),x]

[Out]

(-2*Sqrt[Cos[c + d*x]]*Sin[c + d*x]*(((-1/8 + I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/
(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 +
b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]] - Log[Sqrt[-a^2 + b^2] + (1 +
 I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(-a^2 + b^2)^(3/4) + (5*a*(a^2 - b^2)*
AppellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]])/((a^2 - b^2
+ b^2*Cos[c + d*x]^2)*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b
^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*A
ppellF1[5/4, 3/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c + d*x]^2)*Sqrt[Sin[c + d*x
]^2]))*(a + b*Sqrt[Sin[c + d*x]^2]))/(d*Sqrt[e*Cos[c + d*x]]*Sqrt[Sin[c + d*x]^2]*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Maple [C]  time = 2.056, size = 678, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x)

[Out]

2/d*b*e*sum((_R^4+_R^2*e)/(_R^7*b^2-3*_R^5*b^2*e+8*_R^3*a^2*e^2-5*_R^3*b^2*e^2-_R*b^2*e^3)*ln((-2*sin(1/2*d*x+
1/2*c)^2*e+e)^(1/2)-e^(1/2)*cos(1/2*d*x+1/2*c)*2^(1/2)-_R),_R=RootOf(b^2*_Z^8-4*b^2*e*_Z^6+(16*a^2*e^2-10*b^2*
e^2)*_Z^4-4*b^2*e^3*_Z^2+b^2*e^4))-1/8/d*(e*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a/b^2*sum(1
/_alpha/(2*_alpha^2-1)*(8*(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*_alpha^3*b^2-8*b^2*_alpha*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha
^2-1),2^(1/2))*(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)+a^2*2^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)
*(4*cos(1/2*d*x+1/2*c)^2*a^2-3*b^2*cos(1/2*d*x+1/2*c)^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a
^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))*(-sin(1/2*d*x+1/2*c)^2*e*(2*sin
(1/2*d*x+1/2*c)^2-1))^(1/2))/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-sin(1/2*d*x+1/2*c)^2*e*(2*sin(1/2*d*x+
1/2*c)^2-1))^(1/2),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))/sin(1/2*d*x+1/2*c)/(e*(2*cos(1/2*d*x+1/2*c)^2-1))
^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e \cos \left (d x + c\right )}{\left (b \sin \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(e*cos(d*x + c))*(b*sin(d*x + c) + a)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e \cos \left (d x + c\right )}{\left (b \sin \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*cos(d*x + c))*(b*sin(d*x + c) + a)), x)